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¥ SUMMARY i

This report documents the results of an experimental investigation of local
surface-temperature-discontinuity effects on measured wall shear stress. The
results are correlated and previously published skin-friction data are adjusted
to compensate for this drag-element temperature effect. Design modifications
and updated capabilities of the NSWC designed skin-friction device are also
presented.

The work described in this report was performed under the sponsorship of the
Naval Air Systems Command, TASK A320-320C/004A/7R023-02-003 with Mr. Volz as
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INTRODUCT I ON

It is well known that a local discontinuity in the surface temperature of a
body in motion will markedly influence the heat transfer from the fluid to the
body over the region where the discontinuity exists. This effect is especially
evident in plug-type calorimeters in high-speed wind-tunnel testing. A similar
local "hot spot" condition can occur in skin-friction balance testing when a skin-
friction balance drag element is thermally insulated from the cooled or heated
main surface surrounding the element.

In the simulation of high-speed flight in a ground test facility where heat
transfer is of consideration, the ratio of the wall-to-stagnation temperature is
usually matched. The ratio can be attained in a wind tunnel either by raising the
stagnation temperature of the facility or cooling the model surface. It has been
the practice at NSWC to employ the latter approach in previous experimental studies
of the turbulent boundary layer with heat transfer. Temperature ratios as low as
0.2 have been attained by the cryogenic cooling of the nozzle wall in the NSWC
Boundary Layer Channel (see References | and 2).

From the inception of the cold-wall tests it was realized that a skin-friction
balance would be needed which could operate in a cryogenically cooled environment.
Such a balance was designed and built (see Reference 3) with a provision for
cooling the drag element to the surrounding test-plate temperature just prior tfo
data acquisition. This was to be done by clamping a cryogenically cooled manifold
around the drag element. Unfortunately, this provision was not operational during
the original tests and the drag element reached a temperature during each test run
which was some 150%Khotter than the surrounding test-plate temperature. Since the
effects of such a temperature step were unknown, the drag-element cooling
capability had fo be made operational in order to validate the previous test data.
Through numerous balance design modifications and improvements, this cooling
capability was made operational and validation tests were performed.

The present report describes the results of those validation tests. The drag-
element temperature data are correlated and this correlation is applied to earlier
published data. The data of Westkaemper (Reference 4) agree with the present
results; however, the conclusion reached by that author; i.e., negligible temper-
ature step effects, are not consistent with the findings of this study.

1Voisinef, R. L. P., and Lee, R. E., "Measurements of a Mach 4.9 Zero-Pressure
Gradient Turbulent Boundary Layer with Heat Transfer," NOLTR 72-232, Sep 1972.

2yoisinet, R. L. P., and Lee, R. E., "Measurements of a Supersonic Favorable-
Pressure-Gradient Turbulent Boundary Layer with Heat Transfer," NOLTR 73-224,
Dec 1973,

3Bruno, J. R., et. al., "Balance for Measuring Skin Friction in the Presence
of Heat Transfer," NOLTR 69-56, Jun 1969.

4Wesfkaemper, J. C., "Step Temperature Effects on Direct Measurements of Drag,"
AlAA Journal, Vol. I, No. 7, Jul 1963, pp. 1708-1710.
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FACILITY AND TEST CONDITIONS

Wind-tunnel tests were conducted in the NSWC Boundary Layer Channel
(Reference 5) at nominal freestream Mach numbers of 2.9 and 4.9. Skin-friction
measurements were made on the flat nozzle-wall test plate of the facility
(see Figure 1). The copper test plate was cryogenically cooled with liquid
nitrogen to a temperature of 899K. The supply temperatures were nominally 422°K
and 403°K at the Mach 4.9 and 2.9 conditions respectively. The test conditions
for the Mach 4.9 case were essentially the same as those reported in Reference 1 ¥
since the present tests were conducted for the purpose of validating the previous
test data. The Mach 2.9 test conditions were similar except for a change in
nozzle contour. The Reynoids number was varied by changing the supply pressure
from 1 to 10 atmospheres at Mach 4.9 and 1 to 2 atmospheres at Mach 2.9. Data
were obtained at several axial stations along the test plate. Typical wind=tunnei
test runs lasted on the order of 90 minutes with half of that time being used for
tunnel cool-down procedures.

BALANCE DESCRIPTION AND OPERATION

The skin-friction balance used in these tests is pictured in Figure 2. It is
a redesigned version of the balance described in Reference 3. It is of the self-
nul ling type whereby a circular floating drag element is continually re-centered
by a servo-feedback system. The unique feature of the balance design is the
"clam-shel I" mechanism used to cool the floating drag element to the temperature
of the surrounding test plate. Although the basic design of the new balance is
similar to the old, significant modifications have been made in the process of
design optimization.

The balance drag element is sketched in Figure 3. It consists of a flat
surface circular element which is 2.00533 cm. in diameter (surface area = 3.15836
cm.2). The lip thickness is 0.00762 cm. and the clearance gap around the element
is 0.0127 cm. The element edge is beveled at a2 459 angle to minimize edge-pressure
effects and the element surface is aligned flush with the surrounding flange
surface to within + 0.001 cm. Since the balance mechanism is of the self-nulling
type, the clearance gap around the drag element does not change with loading.

The balance servo-feedback system operates in a manner similar to the previous
design. The surface shear stress acting on the drag element causes the balance
arm to rotate about a frictionless pivot (refer to the schematic in Figure 4).
The movement of the arm is sensed by a translational Linear Variable Differential
3 Transformer (LVDT). The LVDT null-offset signal is monitored by servo-feedback
electronics and a DC motor is activated to produce a restoring force to the balance
arm via a lead-screw, spring guide, and spring. The force exerted by the restoring
spring opposes the shear force and restores the balance arm and drag element to a
null or centered position. The magnitude of the restoring force is proportional to
the shear force and is monitored by a potentiometer which is geared to the lead-
i screw.

Since the servo-feedback is a dynamic system; spring, mass and damping com-
ponents must be adjusted to obtain a stable response to the applied shear loading.
The mass of the system is concentrated in the balance arm and counterweight and ‘
remains constant except for minor changes which are initially made for static

5Lee, R. E., et. al., "The NOL Boundary Layer Channel," NOLTR 66-185, Nov 1966. .
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balance. Spring components in the system are found in the restoring spring and

in the frictionless pivots, the flexures. These springs are matched to the drag
loading expected in the test. Damping is introduced in the system using a dash-

pot. This is a change from the original design of damping discs which were developed
by Durgin (Reference 6). The dashpot is composed of a small piston housed in a non-
ferrous cylindrical casing with a clearance gap between the two. The piston is

made from a magnet and a magnetic damping fluid (References 7 and 8) is introduced
into the clearance gap. The damping fluid (Dyester base, 10K centipoise viscosity) stays
in the gap because of its magnetic atftraction to the piston. The size of the piston
and gap and the viscosity of the damping fluid determine the amount of viscous
damping which is introduced in the system. Electronic damping (filtering) is also
used to regulate the overall balance sensitivity and response. The final adjust-
ments to the system are generally made to produce a critically damped response to

an applied shear-stress loading. An underdamped system can cause undue oscillations
of the balance arm about the null position and an overdamped system can respond too
slowly to changes in the loading. The technique of system adjustment is generally
one of trial and error.

Preliminary tests showed the balance to be sensitive to temperature changes
around the critical balance components, i.e., the flexures, LDVT, springs and aft
housing. Since the balance had to be used in a cyrogenically-cooled environment,
special precautions were taken to insulate these sensitive components from the
extreme cold. The mounting flange and drag-element cooling mechanism which are in
direct contact with the cryogenic cooling were thermally insulated from the aft
portion of the balance housing to minimize conduction effects. As an added temper-
ature buffer, heater tape was applied to the mid-balance housing to compensate for
the extreme cold at the mounting flange. As a result, the aft balance housing
temperature remained relatively constant through each test run and thermal effects
on the balance calibration were minimal.

The dimensional stability of the balance which relates to component expansion
and confraction with temperature was minimized by using Invar and other materials
having low coefficients of thermal expansion. Components such as the balance arm
and balance housing had to be constructed of these materials otherwise the thermal
expansion of the components would have changed the drag-element alignment with
the surrounding suriace. Maximum variation in surface alignment under cryogenic
conditions vas less than + 0.0025 cm.

In @ manner similar to that described in Reference 3, the present balance
design has the capability of pre-cooling the drag element to the temperature of the
surrounding wall by placing a coolant manifold, a "clam-shell" device, in direct
contact with the drag element. The clamping action of the "clam-shell" is
accomplished via a pneumatic cylinder, worm gear, and l|inkages (see Figure 5).

6Durgin, F. H., "The Design and Preliminary Testing of a Direct Measuring Skin
Friction Meter for Use in the Presence of Heat Transfer," Massachusetts Institute
of Technology Report 93, Jun 1964

7Ezekiel, F. D., "Uses of Magnetic Fluids in Bearings, Lubrication and Damping,"
ASME Paper 75-DE-5, 1975

8Moskowifz, R., "Designing with Ferro-Magnetic Fluids," ASME Paper 74-DE-5, 1974
and reprinted in Mechanical Engineering, Feb 1975
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The coolant flows from an external reservoir through an internal network of mani-
folds, flexible metallic bellows, and the "clam-shells." The mounting flange

of +?e balance is cooled by conduction from the surrounding test plate. When
l!qu!d nitrogen was used as the coolant, the drag element could be cooled to
ylfhln 157K of the surrounding test-plate temperature. Since the drag element

is mage of copper and has a relatively large thermal capacity, its temperature did
not rise at any significant rate after the release of the cooling manifold.

BALANCE CALIBRATION

The balance was easily calibrated because of its orientation when mounted in
the vertical vind funnel. Standard weights were directly attached to the surface
of the drag element and the resultant force acted in a direction tangent to the
drag-element surface. The balance response to the applied force was monitored by
measuring the voltage output across the balance potentiometer. The balance was
adjusted to accommodate loading as high as 3000 mg for fthe Mach 2.9 tests and
1500 mg for the Mach 4.9. Calibrations (as shown in Figure 6) were represented
by straight lines with the "zero," no-load intercept, and "slope," voltage per
milligram of loading, being the calibration constants. The calibration "slope"
which was a function of the restoring spring constant and potentiometer voltage
setting, changed very little between test runs, and proved to be very stable for a
particular balance configuration. The calibration "zero" constant which relates
to the no-load output of the balance varied with aft housing temperature and to
a lesser degree with static pressure.

The effects of temperature and pressure on the balance calibration were
evaluated in an environmental test chamber prior to wind-tunnel testing. By
changing the ambient temperature of the balance, a calibration "zero" shift
was measured as shown in Figure 7. This calibration shift was primarily a
result of thermal effects on the sensitive balance components housed in the aft
portion of the balance. As was noted earlier, the aft balance housing was
maintained at a relaTvively constant temperature during a wind-tfunnel test run
to minimize the temperature change and the resulting errors. The balance housing
temperature was monitored during each wind-tunnel test and if a ftemperature change
occurred, appropriate corrections were made to the calibration "zero" constant.
For the longest of wind-funnel test runs the aft housing temperature changed by
less than 3°K. The no-load "zero" reading was monitored just prior to and just
after each air flow cycle allowing for a relatively short time and small tempera-
ture change between calibration checks.

Changes in the drag-element temperature did not affect the balance calibration.

This was determined by obtaining no-load and loaded calibration checks before and
after activation of the "clam-shell" cooling manifold. Both the calibration
"zero" and "slope" were found to be unaffected by the temperature changes of the
mounting flange and drag element.

The effects of static pressure on the newly designed balance were not
significant. This is in confrast to the problems noted in Reference 3 where a
sizable calibration "zero" shift resulted with pressure change. The reason for
the previous problem related to the LVDT and the way in which it has been
electronical ly excited. Present calibration results are shown in Figure 8. Since
a calibration "zero" reading was taken before and after each wind-tunnel test run
at a low pressure near the flow static pressure, a correction to the calibration
was not necessary.

8
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WIND-TUNNEL TEST PROCEDURE

The skin-friction balance was made to fit the instrumentation ports in the
copper test plate of the Boundary Layer Channel. The aft portion of the balance
projected back into the plenum chamber of the facility where associated wiring,
liquid nitfrogen supply lines, and pressure leads were attached. The aft portion
of the balance was sealed, eliminating air leakage through the balance from the
plenum of the test-plate surface.

For each wind-funnel test run the following procedures were generally followed:

1. Prior to each run, a check of drag-element alignment and centering was
made.

2. The balance was load calibrated while installed in the test plate.
3. The facility doors were closed and the test section was evacuated.

4. The test plate was cooled with liquid nitrogen.

5. Once the test-plate temperature was achieved uniformly, the balance "no
load" output was recorded.

6. The air flow was started and drag measurements were obtained. Both
Reynolds number and drag-element ftemperature were cycled.

7. At the completion of data acquisition, the tunnel was shut down and the
liquid nitrogen cooling was stopped. A no-flow condition was
established at a low test section pressure and temperature. A balance
""no-load" output was recorded.

8. The fest-section pressure was elevated to atmospheric pressure
conditions, facility doors were opened, and a check of the drag-element
alignment was made.

9. After a period of facility warmup, a post-test calibration was conducted.

This sequence of events is illustrated in Figure 9.

A TV 0 M T S N S, e T Y P oy PR AT 6,12 <l Pt 3

A number of test parameters were monitored during each wind-tunnel run.
These included the wind-tunnel supply pressure and temperature, the test-plate
temperature and static pressure, the balance internal pressure, the drag-element
temperature, the balance afft-housing temperature, and the balance potentiometer
voltage reading. These parameters established aerodynamic and heat-transfer
conditions, allowed balance calibration checks, and provided the shear-stress
data. The "slope'" constant in the balance calibration was assumed constant
through each run based on preliminary test results and the calibration checks
which were taken before and after each test. The "zero" constant was evaluated
from the "no-load" balance readings obtained just before and just after the air-
flow cycles (at steps 5 and 7 and at times during step 6 in the procedure). Any
changes in the "no-load" readings before and after the run were usually traced to
aft housing temperature changes and appropriate corrections were made. This
correction was usually minimal.

AT PR € i -+
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The shear stress variation with drag-element temperature was obtained in one
of two ways; either the Reynolds number was cycled for progressively cooler drag-
eiement temperatures or the drag-element temperature was cycled for set Reynolds
number conditions (see Figure 9). Procedure steps 6A and 6B). The latter technique
produced more consistent data; however, once the drag element had been cooled over
one cycle it took a long time for it fo warm up for a _2cond cycle at a different
Reynolds number.

The drag element of the skin-friction balance was not cooled during the
initial stages of a test run and the drag element reached a temperature which was
several hundred degrees above the temperature of the surrounding cooled surface.
By obtaining wall shear-stress measurements at this temperature and for success-
ively cooler drag-element femperatures using the "clam-shell" cooling mechanism,
surface shear-stress data were obtained over a range of drag-element temperatures.

RESULTS

Typical plots of the surface shear stress versus drag-element ftemperature are
shown in Figure 10 for both the Mach 4.9 and 2.9 conditions. An "ideal" cold-wall
shear stress is obtained from an extrapolation of such data to where the drag-
element temperature is equal to the surrounding wall temperature. The slope of
this extrapolation line gives the shear error per degree of temperature
difference.

Since the wall shear stress is defined as

du
e ‘dy (1)
a discontinuity in surface temperature car influence the surface shear stress
through the fluid viscosity and/or the velocity gradient at the wall. Figure 10
shows that the effect of a locally "hot" drag element is fo increase the local
wall shear stress in proportion fo the difference between the drag-element temp-
erature and the surrounding wall temperature. |t is easy to see from Equation 1
that the higher the drag-element temperature, the higher the surface viscosity,
and the higher the measured wall shear. The effects of a temperature step on the
local boundary-layer velocity gradient at the wall cannot be analyzed as directly.
Many factors can influence the velocity gradient at the wall, including the size
and shape of the drag element, the boundary~-layer thickness, the boundary=-layer
velocity and temperature profiles, the Mach number and the Reynolds number. Over
the limited scope of these tests the drag-element geometry and size were unchanged
and only the Mach number and Reynolds number were varied.

The shear-stress error per degree of temperature difference, i.e., the slope
of the linear variation of shear stress with drag-element temperature, is shown
in Figure 11 as a function of Reynolds number. The magnitude of the error is
observed to decrease slightly with decreasing Reynolds number for the Mach 4.9
data. At Mach 2.9, only two Reynolds number conditions provided data and no
trends could be determined other than the general agreement of the Mach 2.9 data
with the Mach 4.9 results. A least-square fit of all the data provided a
calibration curve of the form

10
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¥ (M) = A log,, (Re/m) + B (2)

DE W M2 oK

0.0310988
0.1795555

where: A
B

noun

The data of Westkaemper (Reference 4) is often referenced on the subject of

. Temperature~step effects. Westkaemper concluded that a moderate temperature
mismatch (maximum of 34°K) produced a negligible effect on the drag (less than 2
percent) over the range of test conditions covered in that study (Mach 5, Reynolds
number per meter from 16.5 to 25 million). |[|f the present correlation (EquaTiog 2)
is evaluated for the conditions of WesT&aemper's tests (Mach 5, Re/m = 20. x 107},
a wall shear stress error of 0.0475 N/m“ per ©K is indicated. For a 34°K maximum
temperature step and a nominal wall shear stress of 82.1 N/m? (C¢ assumed equal
to 0.0015), the wall shear stress variatlon which might be expected from
the present correlation would be of the order of 1.96 percent. This
low percentage error is within the observed drag variation and stated experimental
accuracy noted by Westkaemper. As such, if fthe present correlation were to hold
for those tests, the expected error would be small, it would be very difficult to
evaluate and could easily be over-shadowed by the accuracy limitations of the
experiment. The temperature-step effects might be considered negligible for those
tests; however, the inference that the temperature-step effects are generally
negligible must not be made.

It has been shown that the absolute magnitude of wall shear-stress error per
degree of temperature mismatch is not a strong function of the wall shear stress
(see Figure 11). As such, the percentage error will be small if the absolute
magnitude of the wall shear stress is large. However, the opposite will be frue
for small values of wall shear stress.

The magniTude of the temperature-step effects in these tests is better
realized in Figure 12 where the calibration results are presented in fterms of the
percentage error. Errors as high as 0.45 percent per degree (K) of femperature
mismatch are indicated. The percentage errors are higher at the higher Mach
number conditions because the wall shear stress is lower for the same Reynolds
1 number (the absolute error showed no dependence on Mach number). For a constant

Mach number, the percentage error increases with decreasing Reynolds number.

Again the magnitude of the percentage errors tends fo reflect the magnitude of the
. wall shear stress. |t is important to note that the percentage errors can become
: very large as the value of the wall shear stress becomes small; i.e., for high
Mach numbers and/or low Reynolds numbers.

As a final note, some comment should be made as to drag-element misal ignment
and the possibility of errors resulting from such misalignment. Several precauticns
were taken to minimize this probiem as discussed in the text and, for the most part,
the steps taken were successful. The drag—element misalignment was less than
+ 0.0025 cm, and based on the data of O'Donnell (Reference 9 ) an error in shear
stress of less than + 4 percent could be expected. Between duplicate test runs
and for certain long test runs where the temperature of the drag-element was
cycled several times, the level of shear stress was siightly different betwecen
temperature cycles. These shifts could not always be cxplained in terms of

I gO'Donnell, Francis B., Jr., "A Study of the Effect of Floating Element Misalignment
on Skin~friction-Balance Accuracy," DRL Report-515, CR-10, Mar 1964

11
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calibration shifts and a drag-element misalignment was suggested. |t should be
noted, however, that the data showed a consistent trend of decreasing shear
stress with decreasing temperature for each of the temperature cycles. Also,
the shift in shear stress which was due fo suspected misalignment of the drag
element was always less fthan the change in shear stress due to drag-element
temperature effects. Since the data Weréanalyzed for single temperature cycles,
changes in the shear-stress value between cycles were not considered and effects
on the analysis were considered minimal.

Since the purpose of these tests was to obtain a calibration which could be
used to verify previously published skin-friction data, it is appropriate that
the calibration now be applied fo that data. Refer to Appendix A for a listing
and description of corrections which were applied to the skin-friction data of
References | and 2.

CONCLUSIONS AND RECOMMENDAT IONS

An experimental study was conducted fto determine the NSWC skin-friction
balance drag-element temperature effects on measured wall shear stress. The
results of the study indicate a friction-drag variation which is proportional
to the difference between the drag-element femperature and the temperature
of the surrounding wall. The percentage change can become very large when the
value of the wall shear stress is low, i.e., for high Mach numbers and/or low
Reynolds numbers.

Additional work is needed to gain a better understanding of temperature-
step effects. The present study has shown that an effect exists and this
effect can be significant. Other experimentalists must now consider this fact
and evaluate the effects for their balance configuration and flow-field
conditions. Of equal imporfance to experimental resulfs is the need for
analytic modeling of the effect. Hopefully from an analytic approach, the
important parameters which influence the effect may be determined.
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SYMBOLS

local skin-friction coefficient
Mach number

pressure

static pressure

Pitot pressure

recovery factor

Reynolds number per meter

momentum thickness Reynolds number
temperature

velocity

distance along plate from nozzle throat
distance normal to plate
boundary-layer thickness
displacement thickness

momentum thickness

energy thickness

total enthalpy thickness

dynamic viscosity

kinematic viscosity

density

shear stress

12
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Subscripts

aw
DE
e
o
t

w

Superscripts

N3WC/WOL TK 77-7

adiabatic-wall conditions
drag element

free-stream conditions
tunnel supply conditions
stagnation conditions

wall conditions

transformed quantities

16
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FIGURE 2 NSWC SKIN-FRICTION BALANCE
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FIGURES5 SKIN FRICTION BALANCE COOLING ASSEMBLY
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FIGURE 10 WALL SHEAR STRESS VARIATION WITH
DRAG ELEMENT TEMPERATURE

27




‘103443 d31S 3HNLVYIdNIL
NO H38WNN SAGTONA3Y 40 3ON3INT4INI  LL IHNOIS

H313W H3d H3GWNN SAGTONA3YH - W/34

v z MOl 8 9 v z g0L
T _ L Py _ 0
= |~
o)
—{zo0 ™ m.
—|
\ S |s
2 Z°ND3 sl
~ 114 34VYNOS 1S3 — —{ voo
o« \
5 / |~ s 2
o =
£ el 4 ¥z
(8] A
w —
2
— 900
6Z HOVN f
—{ 800
6y HOVYW O

oLo




i

PERCENT DRAG ERROR PER 1.°K TEMPERATURE STEP

NSWC/WOL/TR77-7
10 100.
MACH 4.9
0.1— MACH 2.9 =110
—
— PERCENTAGE BASED ON
EQN. 2 AND THE
“)DEAL"” DRAG MEASURED
WHEN Tpe=T,,
0.01 | 1.
106 107 108

RE/M - REYNOLDS NUMBER PER METER

FIGURE 12 TEMPERATURE STEP EFFECTS IN PERCENT

OF “IDEAL"” DRAG.

29

PERCENT DRAG ERROR PER 100. °K TEMPERATURE STEP




| N— | _

NSWC/WOL TR 77-7

APPENDIX A

CORRECTIONS TO PREVIOUSLY PUBLISHED DATA

In References 1 and 2 cold-wall skin-friction results were presented and a
statement was made to the effect that the cold-wall data were obtained with a
locally "hot" drag element. By applying the correction for temperature-step
effects as derived in this study, significant changes to the previously
published results are indicated.

Figure Al shows a summary of the Mach 4.9 zero-pressure-gradient (ZPG)
skin-friction data which was presented in Reference 1 together with corrected
results. The data are shown in an incompressible frame of reference usina
the compressibility transformation of Van Driest (Reference A1) in the form:

2
— r (0.2 M%)
&) =i e (A1)
-1 {282 - B - B 2
{sin (7——2 + sin (————)}
B Ak 82 + 4p?
ey H
Ry ' = S B " (A2)
6 uw g

where:

‘/Te 2
A=Y—r 0.2 Me r = 0.89

Using this fransformation, the effects of Mach number and heat transfer on the
skin-friction coefficients are eliminated and the trends in the data are more
easily noticed. Shown for comparison to the data is the incompressible, zero-
pressure-gradient relation of Karman-Schroenherr (Reference A-2).

AlVan Driest, E. R., "Turbulent Boundary Layer in Compressible Fluids,"

Journal of the Aeronautical Sciences, Vol. 18, No. 3, Mar 1951, pp. 145-160-

A2Schoenherr, K. E., "Resistance of Flat Surfaces Moving Through a Fluid,"
Society of Naval Architects and Marine Engineers, Vol. 40, 1932, pp. 279-313.

A-1

—
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Figure Al shows the uncorrected cold-wall (CW) data of Reference 1 to have a

trend which is quite different from the adiabatic-wall (AW) and moderate-heat-
transfer (MHT) results. The AW and MHT skin-friction data are consistently
(from 15 to 20 percent) below predicted values and vary inversely with the

1 0.25 power of Reynolds number. The higher skin-friction values and increased

power relationship of the CW data could not be explained prior to the recent

tests. Only when the temperature step correction, equation (2), is applied

to the CW data do the CW results fall in line with the AW and MHT results.

The values of CW skin-friction are reduced by the correction and the reduction

is greater at the lower Reynolds numbers resulting in a change in the Cf vs.

Ree power trend.

3 In a similar manner, the temperature-step correction was applied to the

: favorable-pressure-gradient (FPG) data of Reference 2. These results are
shown in Figure A2. The frends of lower skin-friction values and reduced
power exponent relationship with Reynolds number are again present, however,
the magnitude of the correction is not as pronounced due to the higher values
% of wall shear stress which were experienced in the FPG flow field. Corrected
tabulations of the ZPG and FPG data of References | and 2 are presented in
Tables Al and A2. These data listing should be considered as addendum fo the
previous data reports.
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TABULAR OUTPUT NOMENCLATURE

The nomenclature used in the computerized tabular output (Tables Al and A2)
is defined as follows:

PO tunnel supply pressure

TO tunnel supply temperature

TW wall temperature

TDE drag-element temperature

MPW Mach number

THP boundary-layer momentum thickness

RTHPW momentum thickness Reynolds number

TAUW (UNC) wall shear stress (uncorrected)

TAUW(CORR) wall shear stress (corrected)

CF skin-friction coefficient (corrected)
3 BETADS pressure-gradient parameter




BEST

PO To Tw T0E vPw e
N/M2 DEG.k  DEGeK  CEG.K o
FUN AOe 110191y 2PG=Cws 1.524 ¥ STATION,
1.0264E+06 42647 50,0 201.7 4.968 2771
9.30PE+05  431.1 S0.0 202.2 4.960  .285¢
R 274E+05  422.2  S0.0 201e7 4.956 .2914
7.239F+05 42444 S0.0 201.1 4.961  ,3022
6.205F+05 418.3  S0.0 159.4  4.967  .3125
5.171E+05  422.2  §0.0 157.2 4961  ,2281
4.137E+05 42046 £9.4  163.9  4.95G  .3464
3.103E505  421.1 €8.9 150.0 4.937 L3717
2.06BE+05  425.7 87.8  16T.2 4.922 .4125
1.034E405  423.3 E7.8 17843  4.871  .4874
RUN NOs 1101R1s ZPG-Cws 1.778 ¥ STATIONs NOL
1.034E+06 42444 S0.0  206e1 4,922 42845
9.3CAF+05  625.¢€ G0.0 204.6 4.917  .2927
B.274E+05  428.5 G0.0 203.9 4.914 ,3028
7.239F+05  421.1 G0.0 202.8 4.916 L3112
6.205F+05  420.6 50.0 200.0 4.915  .3241
S.1T1E+05 42444 §0.0  1657.2 44918  .2413
4.1376405  423.3 G0.0 156.4 4,915 .2613
3.103E+05  423.3 €849 191.7 4.899  ,3890
2.06RE+05  427.5 £8.9  188.3  4.886  ,6339
1.034E+05  421.1 €7.8 181.7 4.836  .5143
RUN AO« 110141+ ZPG-Cws 1.981  STATIONs NOL
1.024E406  419.4 G1.7 206.7 4.885  .2892
9.308E+05  426.1 Gl.7 205.6 4.902 .3003
8.274E+05 424.4  S1.7  203.9 4.899  .3094
7.229€405 423.3  Sl.1  201.7 4.902 .3205
6.171F+05 4217 $0.6  198.9  4.865  .3339
S.1T1E405  419.4 S0.0 15647  4.895  ,3494
4.1376405  422.2 €8.9 192.8  4.891  ,3721
3.103F+05  422.2 £8.9  189.4  4.8R6  .4020
2.06KE+05  418.3 ER.9  184.6 4.BT4  ,6462
1.026F+05  422.2 €8.9 176.7 4.830 ,.=378
RUN NO. 110131+ 2PG=Cws 2.134 ¥ STATIONs NOL
1.036F+06 41849 Sle7 20646  4.861  .2924
9.30HE+05  424.4 S1e7 2066  4.908  ,3047
8.276E405  620.6 Slel  203.3 4,906  .2135
7.239F+05  424.4  S0.6  201.1 4.903  .3266
6.205€405 42647  G0.0 1S8.3  4.859  .3415
5.171€+05  422.2 8946  1G4.4 4,855  ,3574
4.137F+05 427.2 €9.4  150.0 4.887  .3819
3.103F+05  427.8 8.9  185.0 4.866  .4130
2.06RE+05  432.8  £B.9 18040 4.859  .4643
1.036E+05 412.8  €8.9 171e1 4.798  ,5470
GUN NO. 11C151s ZPG=Cws 2,286 ¥ STATIONs NOL
1.034E+06 42647 S1e7 21248 44823  .7989
9.308F+05  431.1 S1.7  209.4 4.876 .3116
He274E+05  422.2  Sle7 20647 4,868  .3186
7.229E+05 423.3  Sl.7  203.9 4.849  ,3305
6.205€405 42147 Slel 20046 4.857  .3450
5.171E405  418.3  S0.0 19647  4.866  .3615
4.137€+05 418.3  88.9  192.8 4.846  ,1851
3.103E405 422.2  €8.9  188.9 4.837  .4190
2.0€BE+05  422.2  €8.9 163.9 4.820  .4691
1.024E+05 622.2  £8.9 177.2 4.818 .5706

AILABLE COPY

TABLE A1 CORRECTED COLD-WALL SHEAR STRESS DATA OF REF. 1

NSWC/WOL TR 77-7

FTHPW

NOL RALANCE

4«T]1RF+04
4e31TF+04
4.059F+04
Jeb44E+04
3.267F+Ca
7+REQE+Q4
7e4Z5E+04
19€6F <04
leb4]1Fe04
BeTE9F+07

PALANCF

4eSFPEF+04
4e6CEF+04
4« 1ERE+04
3«B817F+04
Jeb€2E+04
2+9G4E Q4
255 1E+04
24074F 04
145276404
Ge476F+03

RALANCF

Se249E+04
4.T4TF+04
4e3E0E+04
JGE2E+04
3.5€8F+04
3.157F404
2e6EBE+06
2e1€5F+04
1.635F+04
G«RG2F+03

BALANCE

Se3B2F+04
4eBZ4E*04
444G 1F+04
4.039F 04
3.566F+04
F.165¢ + 04
Pe6S0E+04
?«1S57E+04
1.€Z1F+04
1.0€0F+04

RALANCE

Sebz4F 04
4.BEBE+04
4eb12E404
4.206F+04
3.771E+04
3+3C1E+04
2+BE6E+04
?e306E4+04
1.723F+04
1.056F+04

TAUW (UNC)
N/M2

3.8E5F+01
3.642F+01
3.369F+01
3.019€+0]
2.660F+0]
Pe2BQF <0}
1.621F+01
1.545F+01
1.131€+01
6.2G1E+N0

3.864F 401
3.612F+01
3.2G69F+01
24634F+01
24606F+01
2.2F3F+01}
1.609F+0]
1.517F+01
1.113F+01
6.T1RF+00

3.639F+01
3.338F¢01
3.068F+01
2.7RSF <01
2.442F+01
2.062€+01)
1.757F«01
le4]7F+01
1.05RF+01
643206400

3.716F+01
3.457F<01
3.1GRF+0]
?.8G1F+01
2e5C4F+0]
24223F+01
1.R76F+01
1.4R7F+01
1.107F+01
T.206F+00

3.783F+0]
3.457F«01
3.093F+01
2+785F+01
2+478F+01]
2.137F+01
1.7€6F+01
1.405F«01
1.025F+01
642€3F+00

TAUW (CORR)

N/w2

3.37GE+01
3.152€+01
2.B93F+01
7«56AE+01]
22356401
1.901€+01
1573E+01
le246E«0]
Ke929E+00
4493FE+0N

3.333E+01
3.106E+01
2eR15E+0]
PebT1E«Q]
2e17FE«01]
1.6893€+01
1.560E+01
1.213E+01
BeT43E+00
S«282E+00

3«10RE+01
24R33E+01
2e617E401
2¢331E+01
2.01G8E+01
1.7008+01)
1.40FE0]
1e117E+01
Re233E«0C0
4.9F0E«00

3.197E401
295701
2e.T16E+0]
2e438E«0]
2e133E4+01
1.838E+01
1.540E+01
1.202E+01
HeBASE«00
S.R93E+00

3.223E401
24936E+01
2.597E+01
24321E+01
2e06T7E+0]
14742E+01
1.6412€+0]
14104E+01
7.901€E+00
4«307E4+00

CF

G.64lE=-04
G.92FE=04
1.0¢2€6-03
1.0641€6-02
1.062F=023
1.079F =02
le114E=02
1.1576=02
1.226F=03
1.306F=073

S.173E-04
Ges€E3E=04
Seh2TE=04
SebFTE=04
Ge9K3E=-04
1.040E=073
1.06RF=03
1.093€=-02
l1.171E=03
1.361F=03

R.3]4E=-04
R.S30F=0¢
R R4GE =04
S.02PE=04
Sel2%E=04
SelreF =04
G 459F =04
G.QT70E=04
1.0926=02
1.277E=02

R e3KKF=04
R G45F=04
Se?2PF=04
GebaBE=04
Se617E=04
S.912E=04
1.031€=02
1.056E=073
l.165E=02
1.4FGE=023

Re215E=04
Be664E=04
P 5T70F=04
Ho624E=04
B.Q31E=04
G.041E=04
Se163E-04
Ge.4n]1E=06
1.005€=03
1.246F=03

BFTACS

0.000
0.000
0,000
0.000
0.00C0
0,000
0.000
0.000
0.000
0.000

0.000
04000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
N.000
0.000
C.090
0.000C
0.000
0.0C0

0.000
0.000
0.000
0.000
04000
0.000
0,000
0.000
0.000
0.000
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BEST AVAILABLE

TABLE A2 CORRECTED COLD-WALL SHEAR STRESS DATA OF REF. 2

PO T0 Tw 1Dk MEw TP
N/me DEG.x DEG.K CEGar o~
RUN KOs 2020710 FPG=Cwe 1,270 ¥ STATION
1.032F <06 420.7 S7.2 2c¢3.9 4.021 N RAK]
S.CEOF 05 423.,2 ST7.8 2elel 4.006 1830
H.2T4F 05 “30,7 $H.9 2796 4,016 1895
T.22KE 0S5 4?27,.8 ST7.4 2294 4.01% <1953
bez19E¢NS 429,1 S6a.7 2ZkHeY 44013 2026
Ss17RE«NS 422.7 S6.7 2¢6.] 4,017 <7106
4.116F+05 422 .7 S6e7 2clat 3.667 +2221
3.103F«05 425.F 55.6 Zl16.7 3.66¢€ Y Lrs
2.06RE<05 4«26, G2.° 2l 3.564 78217
1.027F+05 417,.8 E7.8 £00.6 3.545 L2069
FUN NOs 2020319 FPG=Cwe 1,77H M STATION,
1.024E 406 426.1 112.2 2¢Te8 4ebr73 «7330
FecS4E+0S «27.6 le.#8 ¢30.0 4,471 7385
HezT4F+0S 423,13 117.8 ¢3lel 44473 « 7455
7.205E+05 424,0 1022 échay bab]n «2%5%0
E.17RF 05 4re.C 138.9 ele? 4.415 «7633
Se171F+05 4211 138.9 celael 44405 7745
4.]130F«0S 422.5 1C5.6 2é2aP 4.408 2907
3.065FE+05 425,.0 G2e2 2217 4462 +2156
2.0FRF 05 426.1 S1.7 203.3 4,372 <3440
1.0%4F +0S w27 .k S1a7 16040 44342 4071
FUN NOe 2020219 FPG=Cwe 1,981 ¥ STATION,
1.0%4E+06 427.2 G2.2 2ch et 4.553 7529
YecfTE+NS 4’7 .M S4.4 2cleR 4,540 « 2595
BecT4E+05 417,.FR 53.3 217.8 4.536 7645
Te2FETE*OS 424 .4 S4.6 215.6 44550 « 2753
6.205F+05 419.4 633 213.3 4.513% 7846
Sel171F+05 423.3 5242 208.9 44531 « 795K
4,102E+05 425.¢6 52.2 204 .4 4.510 <164
3.066E+05 424,27 5242 200.0 44517 «2393
2.0€62F+05 423,.6 Sle7 165.6 40461 «3742
1.024F+05 418,65 Sle7 188.3 4e471 Jbbls
FUN AOs 202011 FPG=Cwe 2e134 M STATION,
1.024E+086 430.6 S7.2 1574 4eb24 2672
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